| Name: | Class: | | Date: | ID: A | |------------------------|--|--------------------------------------|---|-------| | Ionic Bo | onding, Compounds, and Naming | | | | | Multiple (Identify th | Choice
the choice that best completes the statement or a | inswer | s the question. | | | 1. | Which compound is formed from a tight netwa. sugar, $C_{12}H_{22}O_{11}$
b. quartz, SiO_2 | vork of
c.
d. | oppositely charged ions? water, H ₂ O salt, NaCl | | | 2. | *** | electror
s. | | | | 3. | | | e rubber cement. flexible springs, | | | 4. | An ionic bond is a bond that forms between a. ions with opposite charges. b. atoms with neutral charges. c. one atom's nucleus and another atom's ed. the electrons of two different atoms. | lectron | ıs, | | | 5. | Fe ₂ O ₃ is named <i>iron (III) oxide</i> because it con a. three oxygen atoms. b. Fe ³⁺ ions. | ntains
c.
d. | three iron atoms. O³+ ions. | | | 6. | | | | | | 7. | The name for the compound with the formula a. chromium(I) oxide. b. chromium(II) oxide. | Cr ₂ O ₃ c. d. | would be written as
chromium oxygen.
chromium(III) oxide. | | | 8. | a. lose energy.b. become more stable. | c.
d. | give away neutrons. give away protons. | | | 9. | form a(n) bond by their electron a. covalent, transferring b. covalent, sharing | | ionic, transferring ionic, sharing | will | | 10. | | | , 5 | | | 11. | An ionic compound made of copper (Cu²⁺) an a. copper oxygen. b. copper oxide. | d oxyg
c.
d. | | | | 1481111 | e: | | ID; A | | | |---|--------|--|---|--|--| | | 12. | 12. Because the overall charge in a compound must be, the charge of | of iron in Fe ₂ O ₃ can be calculated as 3+ | | | | | | a. 2+ c. 1+ | | | | | | | b. 0 d. 1- | | | | | | 13. | 13. In the compound TiO ₂ , titanium has a charge of | | | | | | | a. 3+. c. 4+. | | | | | | | b. 4 d. 2+. | | | | | | 14. | 14. The chemical formula for an ionic compound of aluminum and chloring | e is | | | | | | a. AlCl. c. AlCl ₃ . | | | | | | | b. ClAl. d. Al ₃ Cl. | | | | | | 15. | 15. The chemical formula for an ionic compound of potassium and oxygen | is | | | | | | a. KO. c. K_2O_2 . | | | | | | | b. K_2O . d. KO_2 . | | | | | antina a sa | 16. | Solid ionic compounds have very high melting points because they a. are positively charged. b. contain metallic elements. c. are made of elements that are solid at room temperature. | | | | | | 1.77 | d. contain charged ions that are locked tightly together. | | | | | *************************************** | 17. | The state of s | as | | | | | | a. copper(II) bromide.b. copper(I) bromide.c. copper bromide.d. copper(III) bromide. | do | | | | | 10 | | | | | | | 18. | When copper combines with oxygen to form copper(II) oxide, the charges a. Cu¹⁺. c. Cu³⁺. | ge of the copper ion is | | | | | | b. Cu ²⁺ . d. Cu ⁴⁺ . | | | | | | | o. oa . | | | | | Comp | | etion
te each statement. | | | | | Comp | neie e | ie each statement. | | | | | | 19. | 19. The charge of each iron ion in the ionic compound FeS is | · | | | | | 20. | The chemical formula for the ionic compound consisting of nitride ions and titanium(III) ions is | | | | | | 21. | Formula units of salt, NaCl, contain equal numbers of and | | | | | | 22. | 22. In ionic compounds, the positively charged ions are formed from | elements. | | | | | 23. | 23. A compound consisting of Br ⁻ and Cd ²⁺ ions would be named | | | |